

EMC of Cables & Connectors & test methods with Triaxial test procedure

CATV - Tap off in Triaxial Cell 1000/150

CATV - Wall outlet in Triaxial Cell 1000/150 with Tube in tube

IWCS, 62nd International Cable · Connectivity Symposium, November 10-13, 2013, Charlotte, USBernhard Mund, bedea Berkenhoff&Drebes GmbH, Herborner Strasse 100, 35614 Asslar, Germany, bmund@bedea.com,1-1

EMC of cables, connectors and components with Triaxial test procedure

bedea

Progress of International Standards for Triaxial Procedure,

TR 62153-4-1 <mark>Ed2</mark>	Introduction to electromagnetic (EMC) screening measurements	2007-11	46/438/ <mark>CD</mark>
62153-4-3 <mark>Ed2</mark>	Surface transfer impedance - Triaxial method	2006-03	46/471/ <mark>FDIS</mark>
62153-4-4 <mark>Ed2</mark>	Shielded screening attenuation, test method for measuring of the screening attenuation a_s up to and above 3 GHz	2006-05	46/439/ <mark>CDV</mark>
62153-4-7Ed2	Shielded screening attenuation test method for measuring the Transfer impedance Z_T and the screening attenuation a_S or the coupling attenuation a_C of RF-Connectors and assemblies up to and above 3 GHz, Tube in tube method	2006-04	46/459 /CD
62153-4-9 <mark>Ed2</mark>	Electromagnetic Compatibility (EMC) – Coupling attenuation, triaxial method	2008-03	in preparation
62153-4-10 <mark>Ed2</mark>	Shielded screening attenuation test method for measuring the Screening Effectiveness of Feedtroughs and Electromagnetic Gaskets	2009-05	46/494/CD
62153-4-15	Test method for measuring transfer impedance and screening attenuation - or coupling attenuation with Triaxial Cell		46/454/ <mark>CD</mark>
62153-4-16	Relationship between surface transfer impedance and screening attenuation, Conversion $a_{\rm S}$ and $Z_{\rm T}$		under consideration

Outline

- Physical Basics of Cable Screening
 - Definitions, electrical length
 - Coupling Transfer Function
- Revised and new Standards for Triaxial test procedures
 - IEC 62153-4-3Ed2, Transfer impedance
 - IEC 62153-4-4Ed2, Screening attenuation
 - IEC 62153-4-7Ed2, a_s & Z_T with Tube in tube
 - IEC 62153-4-9, Coupling Attenuation
 - IEC 62153-4-15, Triaxial Cell
 - IEC 62153-4-16, Conversion of a_s and Z_T
- Conclusion & Discussion

IWCS, 62nd International Cable · Connectivity Symposium, November 10-13, 2013, Charlotte, US Bernhard Mund, bedea Berkenhoff&Drebes GmbH, Herborner Strasse 100, 35614 Asslar, Germany, bmund@bedea.com, 1-3

EMC of cables, connectors and components with Triaxial test procedure

Definitions, electrical length

high frequencies: Screening attenuation

 $a_{\rm S} = 10 \log (P_1/P_2) = 20 \log_{10} (U_1/U_2) [dB]$

Ratio of two powers --> length independent

low frequencies: Transfer impedance

Ratio of U/I = R --> length dependent (Ohms law)

Wave length λ $\lambda = (c_0 \cdot v_k) / f$

bedea

bedea

electrically short:

$$f < \frac{c_o}{10 \cdot l \cdot \sqrt{\varepsilon_{rl}}}$$

(IEC 62153-4-3/-4-4)

Theory: The Summing Function S_{nf}

introduced by Halme/Szentkuti 1988, [8]

$$\int_{n_{f}} = \frac{\left|2\sin\left(\frac{(\beta_{1}\pm\beta_{2})L_{c}}{2}\right)\right|}{(\beta_{1}\pm\beta_{2})L_{c}}$$

bedea

≈ sin x/x

B represents the phase constant of the inner resp. the outer circuit

low frequencies

$$S_n \to 1$$

high frequencies

$\left|S_{n}\right| \to \frac{2}{(\beta_{1} \pm \beta_{2}) \cdot l}$

IWCS, 62nd International Cable · Connectivity Symposium, November 10-13, 2013, Charlotte, US(oscillating behaviour)Bernhard Mund, bedea Berkenhoff&Drebes GmbH, Herborner Strasse 100, 35614 Asslar, Germany, bmund@bedea.com,1-5

Measuring with the Triaxial test set-up CoMeT

Transfer impedance & Screening attenuation DC up to and above 12 GHz with one test set-up

Generator and receiver are included in a modern network analyser

IEC 62153-4-3Ed2, Transfer impedance, IEC 62153-4-4Ed2, Screening attenuation

IWCS, 62nd International Cable · Connectivity Symposium, November 10-13, 2013, Charlotte, US Bernhard Mund, bedea Berkenhoff&Drebes GmbH, Herborner Strasse 100, 35614 Asslar, Germany, bmund@bedea.com, 1-7

IWCS, 62nd International Cable · Connectivity Symposium, November 10-13, 2013, Charlotte, US Bernhard Mund, bedea Berkenhoff&Drebes GmbH, Herborner Strasse 100, 35614 Asslar, Germany, bmund@bedea.com,

Changes of IEC 62153-4-3, Transfer impedance

IWCS, 62nd International Cable · Connectivity Symposium, November 10-13, 2013, Charlotte, US Bernhard Mund, bedea Berkenhoff&Drebes GmbH, Herborner Strasse 100, 35614 Asslar, Germany, bmund@bedea.com,

Procedure B: Mismatched and inner circuit with load resistor

IWCS, 62nd International Cable · Connectivity Symposium, November 10-13, 2013, Charlotte, US Bernhard Mund, bedea Berkenhoff&Drebes GmbH, Herborner Strasse 100, 35614 Asslar, Germany, bmund@bedea.com,

Changes of IEC 62153-4-4, Screening attenuation

IEC 62153-4-7Ed2, Transfer impedance and Screening attenuation of connectors and assemblies, Tube in tube test procedure

bedea

Measuring of Coupling attenuation

Coupling attenuation is the sum of the Unbalance attenuation of the pair and the Screening attenuation of the screen

simplified method with standard test head

IEC 62153-4-9, Coupling attenuation, triaxial method, (simplified)

IWCS, 62nd International Cable · Connectivity Symposium, November 10-13, 2013, Charlotte, USBernhard Mund, bedea Berkenhoff&Drebes GmbH, Herborner Strasse 100, 35614 Asslar, Germany, bmund@bedea.com,1-15

EMC of cables, connectors and components with Triaxial test procedure

bedea

Balunless Coupling attenuation (open head)

Baluns are commercial available up to about 1.2 GHz, new cable constructions according to IEC 61156-9 (46C/976/NP) and IEC 61156-10 (46C/976/NP) or to TIA specifications require to measure Coupling attenuation up to 1,6 resp. 2 GHz

IEC 62153-4-9, Coupling attenuation, Triaxial method, **(open test head)** procedure with 2 generators and influence of unbalance attenuation is under consideration at IEC TC 46/WG 5

Balunless Coupling attenuation (simplified, standard head)

Baluns are commercial available up to about 1.2 GHz new cable constructions according to IEC 61156-9 (46C/976/NP) and IEC 61156-10 (46C/976/NP) or to TIA specifications require to measure Coupling attenuation up to 1,6 resp. 2 GHz

IEC 62153-4-9, Coupling attenuation, Triaxial method, (simplified) procedure with 2 generators and influence of unbalance attenuation is under consideration at IEC TC 46/WG 5

 IWCS, 62nd International Cable · Connectivity Symposium, November 10-13, 2013, Charlotte, US

 Bernhard Mund, bedea Berkenhoff&Drebes GmbH, Herborner Strasse 100, 35614 Asslar, Germany, bmund@bedea.com,

 1-17

IWCS, 62nd International Cable · Connectivity Symposium, November 10-13, 2013, Charlotte, US Bernhard Mund, bedea Berkenhoff&Drebes GmbH, Herborner Strasse 100, 35614 Asslar, Germany, bmund@bedea.com,

Different designs of Triaxial Cells

IEC 62153-4-15, Transfer impedance and screening attenuation with Triaxial cell and with Tube in tube procedure

IEC 62153-4-15, includes the changes of 62153-4-3, Transfer impedance and of of 62153-4-4, Screening attenuation.

Higher order modes of cavity

 IWCS, 62nd International Cable · Connectivity Symposium, November 10-13, 2013, Charlotte, US

 Bernhard Mund, bedea Berkenhoff&Drebes GmbH, Herborner Strasse 100, 35614 Asslar, Germany, bmund@bedea.com,

 1-21

EMC of cables, connectors and components with Triaxial test procedure

bedea

Comparison of RG 11 with Triaxial Cell and with Tube

CATV-Tap-off with Triaxial Cell

 IWCS, 62nd International Cable · Connectivity Symposium, November 10-13, 2013, Charlotte, US

 Bernhard Mund, bedea Berkenhoff&Drebes GmbH, Herborner Strasse 100, 35614 Asslar, Germany, bmund@bedea.com,

 1-23

EMC of cables, connectors and components with Triaxial test procedure

bedea

bedea

CATV-wall outlet with Triaxial Cell

IEC 62153-4-10Ed2, Edition 2 is under consideration, 46/494/CD

Draft IEC 62153-4-16, Conversion of $a_{\rm S}$ and $Z_{\rm T}$

draft standard by Thomas Hähner IWCS, 62nd International Cable · Connectivity Symposium, November 10-13, 2013, Charlotte, US 1-27 Bernhard Mund, bedea Berkenhoff&Drebes GmbH, Herborner Strasse 100, 35614 Asslar, Germany, bmund@bedea.com,

EMC of cables, connectors and components with Triaxial test procedure

bedea

bedea

Cable with small hole, tube in tube, 0,5 m

raid

Conclusion 1

- The Screening effectiveness of Communication cables and connectors is described in the lower frequency range by the Transfer impedance Z_T and in the upper frequency range by the Screening attenuation a_s.
- With the Triaxial Test set-up one can measure Transfer impedance Z_T as well as the Screening attenuation a_s from DC up to 8 (12) GHz
 - with one test set-up !
- Furthermore, the Coupling attenuation a_c of screened balanced pairs can be measured balunless up to 3 GHz.
- With the revised standards of the triaxial test procedures according to the IEC 62153-4-n series, one can measure now with mismatch,
 - impedance matching devices are no longer needed.
- With multi port NWAs one can measure Coupling attenuation of balanced cables and components "balunless" up to 3 GHz.
- **Triaxial Cells** allow the measurement of larger connectors & components.

 IWCS, 62nd International Cable · Connectivity Symposium, November 10-13, 2013, Charlotte, US

 Bernhard Mund, bedea Berkenhoff&Drebes GmbH, Herborner Strasse 100, 35614 Asslar, Germany, bmund@bedea.com,

 1-29

EMC of cables, connectors and components with Triaxial test procedure

Conclusion 2

- Advantages of the triaxial test-set-up:
 - simple and easy sample preparation,
 - only one test set up for Z_T, a_S & a_C.
 - high sensitivity up to and above 125 dB (only limited by the NWA),
 - no radiation of electromagnetic energy,
 - covers the whole frequency range from DC up to 12 GHz,
 - high reproducibility.
- Further development is the Conversion of a_s and Z_T, IEC 62153-4-16
- Standards of the 62153-4-n series are maintained by IEC TC 46/WG 5
- This presentation & further information: www.bedea.com
- Contact person & further questions *bmund@bedea.com*

Literature

bedea

- [1] Thomas Hähner, Bernhard Mund, "Balunless" Measurement of Coupling Attenuation of Balanced Cables & Components, Wire & Cable Technology international 07-2013.
- [2] Bernhard Mund, Thomas Schmid: EMC of HV cables and components with Triaxial Cell, Wire & Cable Technology International/January & March 2012
- [3] Bernhard Mund: EMC of Cables & Connectors & Test methods, EMC Zurich 2007
- [4] Lauri Halme, Bernhard Mund et. al, Measurement of the Shielding or Screening Effectiveness of Feed-throughs and Electromagnetic Gaskets up to and above 4 GHz, IWCS (International wire and cable symposium) 2007.
- [5] Bernhard Mund: Measuring the EMC on RF-connectors and connecting hardware, Tube in tube test procedure, IWCS (International wire & cable symposium) 2004, Philadelphia
- [6] Thomas H\u00e4hner und Bernhard Mund: Measurement of the screening effectiveness of connectors & cable assemblies: International Wroclaw Symposium on Electromagnetic Compatibility, EMC 2002
- [7] O. Breitenbach, T. Hähner, B. Mund, "Screening of cables in the MHz to GHz frequency range extended application of a simple measuring method", Colloquium on screening effectiveness measurements, Savoy Place London, 6 May 1998, Reference No:1998/452.
- [8] Lauri Halme, Balint Szentkuti, The background for electromagnetic screening measurements of cylindrical screens. Tech. Rep. PTT(1988) No. 3.

